Skip to main content

INTRODUCTION TO NEUROSCIENCE

CELLS OF THE NERVOUS SYSTEM: GLIA

Showing G-CSF receptor is expressed in the embryonic nervous system radial glia. Details in the textG-CSF receptor is expressed in the embryonic nervous system. The expression shows characteristics of radial glia cells in terms of long processes and termination in end-feet. A E11 forebrain, B E12 spinal cord with dorsal root ganglion, axon root and muscle, C E14 hindbrain, D E16 spinal cord with dorsal root ganglion, E E19 spinal cord, F E19 spinal cord, G E19 hindbrain, H E21 olfactory bulb, I E21 diencephalon, (Immunohistochemical staining of 10 μm paraffin sections, scale bar = 50 μm, d: dorsal, E: embryonic day, v: ventral). Kirsch et al. BMC Developmental Biology 2008 8:32 doi:10.1186/1471-213X-8-32

INTRODUCTION TO NEUROSCIENCE

RESOURCES

  • Glossary Terms
  • Key Takeaways
  • Test Yourself

Although most of neuroscience is concerned with understanding the functions of neurons, there are other cells in the nervous system that are just as interesting. These cells are grouped together under the umbrella classification of glia. Historically, when these non-neuronal cells were visualized under the microscope, the histologists and anatomists had no idea about their function. They were seen all around the neurons, so the assumption was that these cells were structural elements, a sort of living glue, that held the nervous system together. Today, we know that these glia serve a variety of functions; unfortunately, the misnomer “glia”—derived from the Latin word for “glue”—is still used to describe these non-neuronal components of the nervous system.

Astrocytes

Astrocytes are named for their characteristic star-shaped morphology. One of the main functions of astrocytes in the brain is to help maintain the blood-brain barrier. At the end of the extensions of the astrocyte are protrusions called “endfeet”. These endfeet are often wrapped around the endothelial cells that surround the blood vessels. The endfeet release important biological compounds that allow the endothelial cells to remain healthy as they function in maintaining the blood-brain barrier. Astrocytes are also very closely associated with synapses.

Astrocytes also synthesize and produce a variety of trophic factors, which are helper molecular signals that serve several different functions. For one, trophic factors signal to neurons that the neuron should continue to live, or that specific synapses should be maintained. They help guide the neurons as they reach out, forming synapses where appropriate.

Image of an astrocytes stained with fluorescent green markerFigure 3.1 Astrocyte. A green fluorescent marker has been used to stain astrocytes within brain tissue. The astrocytes has star-like projections off the cell body.

Oligodendrocytes

The main function of the oligodendrocytes is to add a layer of myelin around the axons of nearby neurons in the central nervous system. A single oligodendrocyte is able to myelinate up to 50 segments of axons. As cells that produce myelin, they are responsible for increasing the conduction speed of nearby neurons as they send signals. Oligodendrocytes only exist in the central nervous system.

Image of an oligodendrocyte myelinating multiple neuron axonsFigure 3.2 Image of an oligodendrocyte. A single oligodendrocyte shown in blue covers axons from multiple neuron axons with myelin sheath.

SCHWANN CELLS

Schwann cells can only be found in the peripheral nervous system. The main action of Schwann cells is to provide a section of myelin sheath for peripheral nervous system neurons, and in this way, they function similarly to the oligodendrocytes. Schwann cells produce only a single section of myelin, compared to oligodendrocytes, which myelinate multiple sections. Schwann cells also function in the regeneration of injured axons. When nerves in the peripheral nervous system are damaged after trauma, Schwann cells rapidly mobilize to the site of injury.

Image of Schwann cell wrapped around a neuron axon. Details provided in the text.Figure 3.3 Schwann Cell. The Schwann cell is shown in blue. A single Schwann cell wraps myelin around a neuron axon, shown in yellow. Multiple Schwann cells are needed to myelinate one neuron axon.

Microglia

Microglia are a bit different from the other glial cell populations. For one, microglia are more immune cells rather than neural. They act as cellular scavengers that travel throughout the brain and spinal cord. It is estimated that microglia make up 10-15% of all cells in the brain.

As immune cells, microglia identify and destroy clumps of proteins, dead/dying cells, or foreign pathogens that enter into the brain. After an injury to the central nervous system, like a traumatic blow to the head, microglia rapidly react to the area of the insult.

Photograph of microglia and neurons visualized with fluorescent stains. The microglia are much smaller than the neurons.Figure 3.4 Photograph of microglia and neurons. In this microscope photograph, microglia are stained with a green fluorescent stain and neurons are stained with a red fluorescent stain. Microglia are much smaller than neurons.

Ependymal Cells

Along the inside of the ventricles are a lining of glia called ependymal cells. These ependymal cells are columnar with small fingerlike extensions called cilia that extend into the ventricles and into the central canal that runs down the inside of the spinal cord. The cilia have motor properties that allow for them to rhythmically beat to create a current in the surrounding fluid.

Image of ventricles of the brain and the central canal of the spinal cord. Details in the text.Figure 3.5 Image of brain ventricles. The brain ventricles (shown in blue) are hollow areas within the brain that are interconnected and filled with cerebrospinal fluid. The ventricles are connected to the central canal of the spinal cord. The ventricles are show in a lateral view (left) and anterior view (right).

Ependymal cells produce cerebral spinal fluid (CSF). In total, the body can make about half a liter of CSF each day (a little more than two cups.) The ependymal cells are part of a structure called the choroid plexus, the network of blood vessels and cells that form a boundary between the blood and the CSF.

Ependymal cells are ciliated glia that line the fluid-filled cavities of the nervous system. Details in the caption and text.Figure 3.6. Ependymal Cells. Ependymal cells are ciliated columnar cells that line the ventricles and other fluid-filled spaces of the central nervous system. The rhythmic beating of the cilia create movement of the surrounding cerebral spinal fluid. ‘Ependymal Cells’ by Valerie Hedges is licensed under a Creative Commons Attribution Non-Commercial Share-Alike (CC-BY-NC-SA) 4.0 International License.

KEY TAKEAWAYS

  • There are multiple different types of glia cells that each have their own functions

Test Yourself!

1. Which type of glial cell makes cerebral spinal fluid?

  1. Astrocytes
  2. Microglia
  3. Schwann cells
  4. Oligodendrocytes
  5. Ependymal cells

 2. Which cell types are found in the central nervous system?

  1. Ependymal cells
  2. Schwann cells
  3. Oligodendrocytes
  4. Astrocytes
  5. Microglia 
3. Which two cell types are responsible for making the myelin sheath?

  1. Schwann cells
  2. Ependymal cells
  3. Microglia
  4. Oligodendrocytes
  5. Astrocytes
4. Which cell type would respond following an injury to the central nervous system?

  1. Microglia
  2. Ependymal cells
  3. Oligodendrocytes
  4. Schwann cells
  5. Astrocytes

Answers 

  1. Ependymal cells
  2. Astrocytes
  3. Schwann cells and Astrocytes
  4. Microglia

Glossary

  1. glia- Non-neuronal cells of the nervous system
  2. histologists- Histology is the study of biological tissues
  3. blood-brain barrier- A diffusion barrier that prevents some of the substances circulating in the blood to pass to brain tissue
  4. synapses- Junction between neurons or a neuron and a target cell
  5. trophic factors - Chemicals that promote the growth and development of cells
  6. myelin- fatty substance that covers the axons of some neurons
  7. central nervous system- The brain and spinal cord
  8. peripheral nervous system- All nervous system components that are NOT the brain and spinal cord
  9. ventricles- Cavities within the brain that are filled with cerebral spinal fluid
  10. columnar- column-shaped cells
  11. cilia- hairlike vibrating structure found in large numbers on the surface of certain cells that cause currents in the surrounding fluid
  12. cerebral spinal fluid- a clear fluid formed as a ultra filtrate of blood plasma. CSF is present in both the intracranial and spinal compartments

Attributions

Portions of this chapter were remixed and revised from the following sources:

  1. Open Neuroscience Initiative by Austin Lim. The original work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Media Attributions

  1. Astrocyte © Bruno Pascal adapted by Valerie Hedges is licensed under a CC BY-SA (Attribution ShareAlike) license
  2. Oligodendrocyte © Holly Fischer adapted by Valerie Hedges is licensed under a CC BY (Attribution) license
  3. Schwann cell © OpenStax adapted by Valerie Hedges is licensed under a CC BY-SA (Attribution ShareAlike) license
  4. Microglia © Gerry Shaw adapted by Valerie Hedges is licensed under a CC BY-SA (Attribution ShareAlike) license
  5. Brain Ventricles © Bruce Blaus adapted by Valerie Hedges is licensed under a CC BY (Attribution) license
  6. Ependymal Cells © Valerie Hedges is licensed under a CC BY-NC-SA (Attribution NonCommercial ShareAlike) license

 Previous: Cells of the Nervous System: The Neuron

Next: Visualizing Cells of the Nervous System 

Adapted by Kateule Sydney based on Introduction to Neuroscience by Valerie Hedges is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, except where otherwise noted.


Comments

Popular posts from this blog

Echoes of the Dusty Road: A Journey Through Darkness/The Unusual Journey of Compassion

Echoes of the Dusty Road" is a poignant journey through darkness, where courage prevails and hope guides the way home A Journey Through Darkness In the depths of shadows, where echoes roam, Along the dusty road, I find my home. Through valleys of shadows, I bravely stride, Guided by hope, with courage as my guide. In the midst of darkness, where shadows dance, I stand alone, with fear's icy lance. But amidst the howling wind and whispered dire, I choose to believe, fueled by inner fire. In the stillness of the night, whispers softly sing, Reminding me of truths, to which I cling. With resolve in my heart, I press on, Through the darkness, until the light of dawn. In the depths of shadows, where courage prevails, I find strength within, as hope unfurls its sails. For in the journey through darkness, I come to see, The dusty road home, is where I'm meant to be. Through the maze of uncertainty, I forge ahead, With each step, dispelling the fear and dread. Though shadows ma...

Structure and Function of the Respiratory System

This article provides an overview of the respiratory system, detailing its structure, function, and the process of gas exchange in the lungs essential for sustaining life. Image by Respiratory System (Illustration).png Gas Exchange in the Lungs The respiratory system is a complex network of organs and tissues responsible for the exchange of gases between the body and the environment. From the moment we take our first breath to every subsequent inhale and exhale, the respiratory system plays a vital role in sustaining life. This article will delve into the intricacies of its structure and function, focusing on the remarkable process of gas exchange in the lungs. Structure of the Respiratory System: The respiratory system can be divided into two main parts: the upper respiratory tract and the lower respiratory tract. Upper Respiratory Tract: Nasal Cavity: Acts as the entry point for air into the respiratory system. It is lined with mucous membranes and tiny hairs called cilia, which h...

Decoding the Blueprint of Life

This article provides an in-depth exploration of the structure and function of DNA, elucidating its pivotal role in inheritance and the transmission of genetic information across generations. Image by Chromosome DNA Gene.svg Understanding the Structure and Function of DNA in Inheritance Deoxyribonucleic acid, more commonly known as DNA , is often referred to as the blueprint of life. It holds the instructions necessary for the development, functioning, growth, and reproduction of all living organisms. In this article, we delve into the intricate structure and remarkable functions of DNA, exploring its pivotal role in inheritance. Structure of DNA: DNA is a double-stranded molecule composed of nucleotides. Each nucleotide consists of three components: a sugar molecule (deoxyribose), a phosphate group, and a nitrogenous base. The four nitrogenous bases found in DNA are adenine (A) , thymine (T) , cytosine (C) , and guanine (G) . These bases pair specifically with one another: A with T...